
EXPLICIT CLASS FIELD THEORY:

COMPLEX MULTIPLICATION

GEORGE MITCHELL

In this report we develop the theory of complex multiplication and sketch proofs
of the main theorems. We then look at applications of the theorems. Analogous
to how the theory of cyclotomic fields provide an explicit description of abelian
extensions of Q, the theory of complex multiplication provides an explicit descrip-
tion of abelian extensions for K, an imaginary quadratic extension of Q. Our main
references are [1] and [2].

1. Introduction

Our main goals are to understand and apply the following theorems:

Theorem (Main Theorem of CM, Part I). Let O be an order in an imaginary
quadratic field K and let E be an elliptic curve with complex multiplication by O.
Then the j-invariant j(E) is an algebraic number and K(j(E)) is the ring class
field of O.

The main application of this theorem will be when O = OK , the ring of integers
of K. In that case, the theorem gives an explicit construction of the Hilbert Class
Field of K.

Theorem (Main Theorem of CM, Part II). Let K be a imaginary quadratic field
and let E be an elliptic curve with complex multiplication by K. Let h : E → P1 be
a Weber function for E. Then Kab = K(j(E), h(Etors)).

This result gives an explicit description of the maximal abelian extension of K.
The next few sections will be dedicated to defining the required terms in the above
theorems and then sketching proofs of both.

This is analogous to the case with cyclotomic fields, as follows. For Q, it is known
that Qab = ∪NQ(ζN ), that is, we adjoin to Q all roots of unity. This is the famous
Kronecker-Weber Theorem. We can view these roots of unity as torsion values of
an analytic function, namely they are values of e2πiz evalutated at 1/N for positive
integers N.

What the above theorems show, is that for K/Q quadratic imaginary, we can
find a suitable analytic function such that adjoining torsion values of this function
to K will generate all abelian extensions. In our case, we simply have to adjoin
j(E) and also h(Etors). As we will see later, the Weber function at these points is
essentially the x-coordinate of the torsion point (except in two cases). If we were to
adjoin all torsion points of E, and not just the x-coordinate, then we would obtain
abelian extensions of HK , the Hilbert Class Field, but these are not necessarily
abelian over K. Hence the Weber function picks out a suitable subfield.
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2. Elliptic Curves, Lattices and Class Field Theory

In this section we define and build the relevant theory in order to understand
and prove the two main theorems. In particular, we define the j-invariant for
lattices and we give a brief discussion of the ideal-theoretic formulation of Class
Field Theory (CFT).

2.1. Elliptic Curves and Lattices. Let E be an elliptic curve over C. By Uni-
formization, we can view E(C) ∼= C/Λ, for some lattice Λ in the complex plane. An
endomorphism ϕ ∈ End(E) corresponds to a complex number α such that αΛ ⊆ Λ.
In many cases, End(E) ∼= Z, but when the endomorphism ring is stricly larger, one
can show that End(E) ⊗Z Q := K is an imaginary quadratic extension of Q and
that End(E) := O is an order in that field. In this case, we say that E has complex
multiplication by O. If O = OK then we say that E has complex multiplication by
K.

Given a lattice Λ ⊂ C, we can define an elliptic function on Λ, called the Weier-
strass ℘-function:

℘(z; Λ) :=
1

z2
+

∑
ω∈Λ−{0}

(
1

(z − ω)2
− 1

ω2
)

which satisfies the differential equation ℘′(z)2 = 4℘(z)3− g2(Λ)℘(z)− g3(Λ), where

g2(Λ) := 60
∑

ω∈Λ−{0}

1

ω4
and g3(Λ) := 140

∑
ω∈Λ−{0}

1

ω6
.

We further define ∆(Λ) := g2(Λ)3 − 27g2(Λ)2 and finally j(Λ) := 1728 g2(Λ)3

∆(Λ) .

If E/C is an elliptic curve, then j(E) := j(Λ), where Λ is the corresponding
lattice in the complex plane. It is well known that the j-invariant categorizes
elliptic curves up to isomorphism and lattices up to homothety.

If τ ∈ H, the complex upper half plane, then we define j(τ) := j(Λ) where
Λ = Z + τZ.

2.2. Class Field Theory. We now want to formulate CFT using ideals. We
assume that O = OK . Let ClK be the class group of OK and let ElK be the set
of C-isomorphism classes of elliptic curves with complex multiplication by K. Then
for a non-zero fractional ideal a of K, the operation:

[a] ? EΛ := Ea−1Λ

is a well defined action of ClK on ElK . In fact, the action is simply transitive (see
[[2], II.1]). Thus we see that |Elk| = |ClK | <∞.

There is a natural action of G = Gal(K̄/K) on ElK where σ ? E := Eσ. But
since the action of ClK is simply transitive, it follows that there is a unique [a] ∈
ClK , depending on σ, such that [a] ? E = Eσ. In this way we get a well defined
homomorphism

F : G→ ClK

characterized by the property that Eσ = F (σ) ? E for all σ ∈ G. It is a nontrivial
fact that this map does not depend on the representative E ∈ ElK we chose.
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Now let L/K be a finite abelian Galois extension, let c be an integral ideal of
OK that is divisible by all the ramified primes. We make the following definitions:

I(c) = group of fractional ideals of K coprime to c.

P (c) = {(α) | α ∈ K×, α ≡ 1 mod c}
E[c] = {P ∈ E | [γ]P = 0 for all γ ∈ c}.

Let σp be the unique Frobenius element over the prime p ⊂ OK in Gal(L/K). We
can define the Artin map

(·, L/K) : I(c) −→ Gal(L/K)

(a, L/K) = (
∏
p

pnp , L/K) 7−→
∏
p

σ
np
p .

Then CFT gives the following ”weak” version of Artin Reciprocity, which is all
that we will require.

Theorem 2.1. There exists an integral ideal c ⊂ OK , divisible by precisely primes
that ramify in L/K, such that ((α), L/K) = 1 for all α ∈ K×, with α ≡ 1 mod c.

There is a largest ideal cL/K for which the above theorem is true, which we call
the conductor of L/K. We finally quote a proposition that characterizes the map
F earlier described, essentially showing that for half of the Frobenius elements, the
map F is an inverse to the Artin map.

Proposition 2.2. There is a finite set of rational primes S ⊂ Z such that if p /∈ S
is a prime that splits in K, say pOK = pp′ then F (σp) = [p] in ClK .

3. Main Theorem of CM, Part I

We can now prove the first main theorem, restated here for completeness.

Theorem 3.1. Let O be an order in an imaginary quadratic field K and let E be
an elliptic curve with complex multiplication by O. Then the j-invariant j(E) is
an algebraic number and K(j(E)) is the ring class field of O.

Proof. We prove the theorem in the case that O = OK , the ring of integers of K.
We first prove that j(E) ∈ Q̄. To this end, let σ ∈ Aut(C). It is clear that

j(Eσ) = j(E)σ and that End(Eσ) = OK . Since ElK is a finite set, and each
isomorphism class therein is determined by its j-invariant, we have that j(E)σ

takes on finite values as σ varies. Hence [Q(j(E)) : Q] <∞, and j(E) is algebraic
over Q.

Now we prove the statement regarding HK , the Hilbert Class Field of K. We
first show that K(j(E))/K is unramified by showing that the conductor is trivial.
We then use our knowledge of the conductor to show that in this case, the map F
is an isomorphism, which gives the result. Let L be the fixed field of the kernel of
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the homomorphism F. Then we have

Gal(K̄/L) = kerF

= {σ ∈ G : F (σ) = 1}
= {σ ∈ G : F (σ) ? E = E}
= {σ ∈ G : Eσ = E}
= {σ ∈ G : j(Eσ) = j(E)}
= {σ ∈ G : j(E)σ = j(E)} = Gal(K̄/K(j(E)).

This gives that L = K(j(E)). This shows that K(j(E))/K is abelian, since F is
injective on Gal(L/K) by definition of L. Let cL/K be the conductor and consider
the composition

I(cL/K)
(·,L/K)−−−−−→ Gal(L/K)

F−−→ ClK .

Then it follows from Proposition 2.2 and use of the Dirichlet Theorem on primes
that F ((a, L/K)) = [a] for all a ∈ I(cL/K). This immediately gives that

F (((α), L/K)) = 1

for all principal (α) ∈ I(cL/K). Injectivity of F gives that ((α), L/K) = 1 for all
(α) ∈ I(cL/K). By definition of the conductor we must have that cL/K = (1) and
thus L/K is unramified. Thus K(j(E)) ⊆ HK . But now, since cL/K = (1), we have
that I(cL/K)→ ClK is surjective, and by the above characterisation of F , it follows
that F is surjective, thus an isomorphism. Thus

[L : K] = |Gal(L/K)| = |ClK | = [HK : K].

Hence L = HK . �

It can actually be shown that in this case, j(E) is an algebraic integer. This is
proven in three different ways in [[2], II], but was not needed for our purposes.

As an application of this result, lets consider an example given in class.

Example. We want to write p = x2 + 14y2. In this case K = Q(
√
−14). Here we

have ClK ∼= Z/4Z. Then

p splits in K ⇐⇒
(
−14

p

)
= 1.

Since ClK is not trivial, this criterion is not enough to conclude that p = x2 +14y2.
However, using the Principal Ideal Theorem, we know that the primes that split in
HK are those which can be written as x2 + 14y2, so knowing HK more explicitly is
key. Theorem 3.1 gives that HK = K(j(

√
−14)). In ([1], §14), it is shown that

j(
√
−14) = 23

(
323 + 228

√
2 + (231 + 161

√
2)

√
2
√

2− 1

)3

from which it follows that HK = K(
√

2
√

2− 1). Knowing HK so explicitly allows
one to conclude that

p = x2 + 14y2 ⇐⇒
(
−14

p

)
and (x2 + 1)2 ≡ 8 mod p has a solution.

This second condition is related to the minimal polynomial of
√

2
√

2− 1 and its
derivation can be found in [[1], Ch.2].
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4. Main Theorem of CM, Part II

In order to define the second main theorem, we require the notion of a Weber
function. Incidentally, these Weber functions are also used in the computation of
j(
√
−14) from earlier. Weber computed many j-invariants which lead to some very

beautiful numerical equations, much like the one quoted above.
We wish to show that the torsion points of an elliptic curve E with complex

multiplication by K generate abelian extensions of K. Weber functions are used to
pick out the required subfield to make this so.

4.1. Weber Functions. Let HK be the Hilbert Class Field of K and let E be an
elliptic curve defined over HK with CM by K. A Weber function is a finite map

h : E → E/Aut(E) ∼= P1.

We give an example of a Weber function to illustrate their purpose.

Example. If we write E is the form

y2 = x3 +Ax+B, with A,B ∈ HK

then we can define a Weber function:

h(P ) = h(x, y) =


x if AB 6= 0,

x2 if B = 0,

x3 if A = 0.

In this example we see that except for the two exceptional cases (j = 0 and j =
1728) the Weber function just gives the x-coordinate of the point.

One can define a Weber function analytically using ℘(z,Λ) in a way that doesn’t
depend on fields of definiton. This can be found in [[2],II.5].

4.2. Second Main Theorem. We can now state the second main theorem of CM.

Theorem 4.1. Let K be a imaginary quadratic field and let E be an elliptic curve
with complex multiplication by K. Let h : E → P1 be a Weber function for E. Then
Kab = K(j(E), h(Etors)).

Proof. For brevity, we do not prove in detail but instead give a brief overview of
how the proof goes. The theorem is a consequence of the following:

Fact: L = K(j(E), h(E[c])) is the ray class field of K modulo c.
This is shown by proving that (p, L/K) = 1 if and only if p ∈ P (c) and by using

the invariance of h. For a proof of this (very nontrivial) fact see [[2], II.5].
Given this fact, let L/K be a finite abelian extension and let cL/K be the con-

ductor. By CFT and the above fact, we have

L ⊆ K(j(E), h(E[cL/K ])).

Taking the compositum over all conductors gives that L ⊆ K(j(E), h(Etors)) and
then taking the union over all such fields L gives Kab ⊆ K(j(E), h(Etors)).

But the above fact gives that K(j(E), h(Etors)) is a compositum of abelian ex-
tensions, and is therefore abelian. This gives the result. �

As an application of the second main theorem, we consider an example in the
special case that K has class number 1.
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Example. One can show that Etors generates abelian extensions of HK , but not
necessarily of K, that is why the Weber function is necessary. However, if K has
class number 1, then we have that HK = K and

Kab = HK(h(Etors)) ⊂ H(Etors) ⊂ Hab = Kab.

Thus if K has class number 1 then Kab = K(Etors). The j-invariants of these
elliptic curves will be in Q, and in fact Z.

This last result is analogous to the Kronecker-Weber Theorem, whereby the
maximal abelian extension of Q was obtained by adjoining all ”torsion” points to
Q.

5. A Third Main Theorem of CM

There is a third Main Theorem of CM which we state without proof. For this,
we fix the following notation:

Let E/C be an elliptic curve with CM by OK , the ring of integers of a quadratic
imaginary field K/Q. Let σ ∈ Aut(C) and s ∈ IK satisfying [s,K] = σ|Kab . Finally,
fix a complex analytic isomorphism

f : C/a→ E(C)

where a is a fractional ideal of K.

Theorem (Main Theorem of CM, Part III). There exists a unique complex analytic
isomorphism

f ′ : C/s−1a −→ Eσ(C)

so that the following diagram commutes:

K/a K/s−1a

E(C) Eσ(C).

s−1

f f ′

σ

We only say that this theorem is of note because it translates the algebraic
action of σ on the torsion subgroup f(K/a) = Etors into the analytic action of
multiplication by s−1. The theorem then allows one to associate a Grossencharacter
to the elliptic curve E, which then has consequences for the L-series of E (see [[2],
II.9-II.10]).
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