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Introduction

In these notes we will discuss étale coverings of schemes, the algebraic fundamental group,
and will also see how the ”Galois Theory” of fields, covering spaces and schemes are all
examples of Galois Categories.

One aim of these notes is to introduce the notion of the ”algebraic” fundamental group
for schemes, so we begin by giving an example of when the ”topological” fundamental group
of a scheme gives undesirable results, and use this to motivate what is to follow. [3].

Motivation

Consider C with the usual metric topology and let C∗ = C−{0} be the punctured complex
plane. It is a well known result from topology that π1(C∗) ∼= Z. Now endow C∗ with the
cofinite topology (the topology where the closed sets are precisely the finite sets). Then in
this topology, a map f : [0, 1] −→ C∗ is continuous if and only if f−1({x}) is closed for all
x ∈ C∗. Compared to being continuous in the metric topology, this is very weak. In fact, if
γ, ψ : [0, 1] −→ C∗ are two loops based at 1, then we may define a homotopy:

H(s, t) =


γ(s) t = 0

ψ(s) t = 1

1 s = 0, 1

f(s, t) else

where f(s, t) is an arbitrary bijection from what remains of the domain into C∗. In the
cofinite topology, this homotopy is continuous and thus π1(C∗) ∼= 0. Thus we see that the
”topological” fundamental group gives undesirable results when the topology is sufficiently
different from the metric topology. The cofinite topology on C∗ is precisely the Zariski
topology, and so when we consider schemes with the Zariski topology, this discrepancy will
reoccur.

Defining the fundamental group as homotopy classes of loops is where the problem lies.
Fortunately, we can compute the fundamental group using covering space theory, where
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π1(X) ∼= Deck(X̃/X), the group of deck transformations of the universal cover X̃ of a space
X. This lends itself to algebraic generalisation much better than homotopy, and this leads
to the definition of étale coverings for schemes.

Schemes and Morphisms

In this section we define finite étale coverings of schemes. See [2] for more on schemes.

Definition 1: Let (X,F ) and (Y,G) be schemes. A morphism from X to Y is a pair (φ, φ])
such that

• φ : X −→ Y is continuous,

• φ] : G −→ φ∗(F ) is a morphism of sheaves on Y ,

• φx : Gφ(x) −→ Fx is a homomorphism of local rings with φ−1
x (mF ) = mG.

If (X,OX) is a scheme and U ⊆ X is open, then the inclusion map i : (U,OX |U) −→
(X,OX) is a morphism, called an open immersion.

We are now ready for our analogue of ”covering” to schemes. The following definition is
not the standard seen in the literature and is due to Lenstra [1]. It is more hands on and
will be better for our purposes.

Definition 2: A morphism of schemes f : Y −→ X is called a finite étale covering of X if
the following hold:

• for all U ⊂ X affine, f−1(U) is affine in Y ,

• if U = SpecA affine in X, and f−1(U) = SpecB in Y , then B is a finitely generated,
projective separable A-algebra.

Recall that B is a separable A-algebra if the map φ : B −→ HomA(B,A), φ(x)(y) =
Tr(xy) is an isomorphism.

Suppose f : Y −→ X, g : Z −→ X are finite étale covers of X, then a morphism of
covers is a morphism h : Y −→ Z such that f = gh. Thus we may speak of FEtX, the
category of all finite étale coverings of a given scheme X.

Why is this definition a good analogue of ”covering maps” and in what sense does it give
an ”algebraic” fundamental group? We first recall the following theorem from topology:

Theorem 1: Let X be a connected topological space. Then there is an equivalance of
categories between finite covers of X and π̂1(X)-sets, i.e. finite sets on which π̂1(X) acts
continuously. Note π̂1 denotes the profinite completion of π1.

We prove the following main theorem which makes the analogy between topology and
étale clear:
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Theorem (Main): Let X be a connected scheme. Then there exists a profinite group π,
unique up to isomorphism, such that there is an equivalance of categories between FEtX and
π-sets, i.e. finite sets with a continuous action of π.

To prove this theorem we will need the notion of a Galois Category with Fundamental
Functor. This notion generalises and combines the Galois theories of fields, covering spaces
and schemes.

Galois Categories and Fundamental Functor

From now on we follow the path of Lenstra [1].

Definition 3: Let C be a category and F a covariant functor from C to Set. Then (C,F)
is called a Galois category with Fundamental functor if the following properties hold:

A1. C has a terminal object, and the fibred product of any two objects over a third exist
in C.

A2. C has an initial object, the sum of two objects exist in C, and for any object X, the
quotient X/G exists in C, where G is a finite subgroup of Aut(X).

A3. Any morphism h in C can be decomposed as h = f ◦ g where g is an epimorphism
and f is a monomorphism. Moreover, any monomorphism f : X −→ Y in C is an
isomorphism of X with a direct summand of Y.

A4. F preserves the terminal object and commutes with fibred products.

A5. F commutes with finite sums, quotients by a finite group of automorphisms and sends
epis to epis.

A6. If F(f) is an isomorphism then f is an isomorphism.

From the above it can be shown that (Set, Id) is a Galois category. We will see other
examples later. Given a Galois category, we can define the ”fundamental group” for this
category:

Definition 4: Let (C,F) be a small (objects of C form a set) Galois category. The funda-
mental group of (C,F) is Aut(F) = {η : F −→ F | η is invertible}.

The profinite group π from the main theorem will be Aut(F) for some Galois category
and fundamental functor F yet to be defined. We know Aut(F) is profinite because it is a
closed subgroup of

∏
X SF(X), where SF(X) is the group of permutations of F(X). This is a

product of profinite (actually finite) groups and so is profinite.
The profinite group Aut(F) acts continuously on F(X) for each object X, so we define

a functor H : C −→ Aut(F)-sets where H(X) = F(X) but with the continuous Aut(F)
action.

The main theorem to be proved is a corollary of the following theorem due to Grothendieck:
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Theorem 2: The functor H defined above is an equivalence of categories and Aut(F) is
unique up to inner automorphism.

Our proof of the main theorem will be to show that FEtX is a Galois category, though we
have not defined the fundamental functor for this category. First we illustrate two important
examples.

Example 1: Let X be a connected topological space and let CovX be the category of finite
covers of X. Let x ∈ X. We can define a functor Fx : CovX −→ Set where Fx(p : Y → X) =
p−1(x). Then (CovX,Fx) is a Galois category and Aut(Fx) ∼= π̂1(X, x). Applying Theorem
2 in this situation gives a generalisation of the Galois theory of covering spaces.

Example 2: Let k be a field of characteristic zero and let SAlgkbe the category of free sep-
arable k-algebras. Define a functor Fk : SAlgk −→ Set by Fk(L) = Homk(L, k̄) where k̄ is a
fixed algebraic closure of k. Then (SAlgk,Fk) is a Galois category and Aut(Fk) ∼= Gal(k̄/k),
the absolute Galois group of k. Applying Theorem 2 in this case gives a generalisation of the
Galois theory of fields.

We will now prove the main theorem by showing that FEtX is a Galois category.

Properties of FEtX

To show that FEtX satisfies the axioms of a Galois category, we require two notions. The
first will allow us to prove properties relating to the category and the second will allow us
to define the fundamental functor. For all of the following see [1].

Degree

Let A be a ring and P a finitely generated projective A-module. For p ∈ SpecA we know that
Pp is a free Ap-module of finite rank. Thus we can define a function Rank(P ) : SpecA −→ Z
where Rank(P )(p) = rankAp(Pp). Since Rank(P ) is locally constant, we know that it is
indeed continuous.

Let f : Y −→ X be a finite étale cover. For each open affine set SpecA in X, with
f−1(SpecA) = SpecB, there is a continuous rank function [B : A] : SpecA −→ Z, where
[B : A] = Rank(B) as above. We can patch these local rank functions together to obtain a
global continuous rank function [Y : X] : X −→ Z, called the degree of f.

We end this subsection by listing without proof some properties of the degree:

• For all n ∈ Z, the set {x ∈ X | [Y : X](x) = n} is both open and closed.

• The degree [Y : X] is constant on connected components of X.

• Y = ∅ if and only if [Y : X] ≡ 0.

• If Y −→ X and Z −→ X are two finite étale covers, with [Y : X] = [Z : X], and
h : Y −→ Z is a surjective morphism of covers, then h is in fact an isomorphism.
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Geometric Points

The notion of geometric points of a scheme will allow us to define the fundamental functor
for FEtX.

Definition 5: A geometric point of a scheme X is a morphism x : SpecΩ −→ X where Ω is
an algebraically closed field.

Note since Speck for any field k is just a point, we may refer to the above morphism as
a ”point” in X, by reference to the image of the morphism.

Let k be a field of characteristic zero. Then as a scheme, Speck is a point whose sheaf
is k. Suppose f : Y −→ Speck is a finite étale covering. By definition, we know that
f−1(Speck) = SpecB, where B is a finitely generated, separable projective k-algebra. Since
projective modules are direct summands of free modules, we can conclude that Y corresponds
to a free separable k-algebra of finite rank. Thus we have an equivalence of categories between
FEtSpecΩ and SAlgk.

By Example 2 above we know that SAlgk is equivalent to the category of Gal(k̄/k)−sets.
But if k is algebraically closed, then Gal(k̄/k) is trivial and so in this case SAlgkis equivalent
to Set. Combining this with the notion of geometric points, we are able to define the
fundamental functor for FEtXas follows:

Let X be a connected scheme and let x : SpecΩ→ X be a geometric point. If f : Y −→ X
is a finite étale covering, then Y ×X SpecΩ −→ SpecΩ is also a finite étale covering, and thus
we get a functor Hx(−) : FEtX −→ FEtSpecΩ where Hx(Y ) = Y ×X SpecΩ. By the previous
discussion, there is an equivalence J : FEtSpecΩ −→ Set. Thus we define the fundamental
functor of FEtXto be Fx = J ◦Hx.

Proof of Main Theorem

We prove the main theorem by showing that (FEtX,Fx) is a Galois category.

Proof of Main Theorem:

A1: The morphism Id : X −→ X is terminal in FEtX. We can use the fibred product for
schemes (whose existence is proved in [2]) as a fibred product in FEtX. See [1] also.

A2: The morphism ∅ −→ X is initial in FEtX. Existence of X/G for a finite group of
automorphisms of X is shown in [1], and is beyond our scope.

Let f1 : Y1 −→ X and f2 : Y2 −→ X be finite étale covers of X. We define f :
Y1 t Y2 −→ X by f((y, i)) = fi(y). Let SpecA be an affine open set in X. Then by
assumption we know that f−1

1 (SpecA) = SpecB and f−1
2 (SpecA) = SpecC, where B

and C are both finitely generated, separable projectiveA-algebras. Then f−1(SpecA) =
SpecB t SpecC = Spec(B × C). Since B,C are both finitely generated, projective
separable A-algebras, so is B × C. Thus sums exist in FEtX.

A3: Let h : Y −→ Z be a morphism of covers. Partition Z = Z0 t Z1 where Z0 = {z ∈
Z | [Y : Z](z) = 0}, and Z1 = Z\Z0. Then by the properties of degree we know that
h−1(Z0) = ∅ and so h factors as Y → Z1 → Z1 t Z0 which is an epimorphism followed
by a monomorphism. The second assertion of A3 follows in a similar way.
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A4: The functor Fx preserves the terminal object and commutes with the fibred product
because the base change −×X SpecΩ does.

A5: Again the functor Fx commutes with sums, quotients and sends epis to epis because
the base change does.

A6: Let X be connected and f : Y −→ X be finite étale. We know that [Y : X] is constant
on X. Then [Y : X] = [Hx(Y ) : SpecΩ]. Thus it follows that |Fx(Y )| = [Y : X].

Let h : Y −→ Z be a morphism of covers and suppose that Fx(h) : Fx(Y ) −→
Fx(Z) is a bijection. We can decompose h as Y → Z1 → Z0 t Z1 as before, where
Y → Z1 is surjective. Then Fx(Z1)→ Fx(Z0) t Fx(Z1) is surjective since it preserves
epimorphisms. But then Fx(Z0) = ∅, and so [Z0 : X] = 0. Thus Z0 = ∅. Hence Z = Z1

and h : Y −→ Z is surjective. Then [Y : X] = [Z : X] and by properties of the degree,
h is an isomorphism.

Algebraic Fundamental Group

Knowing that FEtXis a Galois category, allows us to define the ”algebraic” fundamental
group for a scheme.

Definition 6: Let (FEtX,Fx) be as above for a given connected scheme X and a geometric
point x ∈ X.. Then we define the algebraic fundamental group of X at x, denoted as
πalg

1 (X, x), to be Aut(Fx), as in the main theorem.

As a final remark, it can be shown that πalg
1 (C∗) = Ẑ, the profinite completion of Z, thus

salvaging the fundamental group from the issues that were outlined in the beginning. See
[4].
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