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We prove the Hasse-Weil bound and the analogue of the Riemann Hypothesis for algebraic curves. The
proof presented here is due to Stepanov, with a simplification by Bombieri [Bom72]. This simplified proof
can be found in our main reference [Ste99]. It essentially only relies on the Riemann-Roch theorem and basic
methods.

1 Zeta Function of A Curve

An (algebraic) curve X over a field k is a projective variety of dimension 1 defined over k. We assume the
reader is familiar with these notions, and can consult [Har77] if not.

Let F, denote the finite field with ¢ elements (with characteristic p), and let Ny be the number of
Fr-rational points of X.

Definition 1.1: Let X be a curve over £ = F,, s a complex variable and set t = ¢~°. The zeta function of

X is
= N,
Z(X,t) = —L¢
(X,1) eXp<§ . )

r=1

where Res > 1.

The Weil Conjectures concern realising certain properties of the above function. For instance, one can
show ([Ste99], Chp. 5) the following rationality

P(t)
(1=t)(1—qt)

where P(t) = 1+ ¢9t% + Zgifl oit', 0; € Q and g is the genus of X. If we let P(t) = H?il(l — w;t) be some

3
factorization in a finite extension of QQ, we have the following

Z(X,t) =

Theorem 1.2: Let X be a smooth projective curve of genus g defined over F,. Then

29
Ny :qr+172w{.
i=1

Proof. We have

>\ Ny 129, (1 — wst)
Z(X,t) = exp (Z | = =l
—r (1-t)(1—qt)
which gives
s} N 2g
Z = (Z log(1 — wﬂ)) —log(1 —t) — log(1 — qt).
r=1 " =1



We now use the expansion —log(1 —ax) = .=, “* to see that

[e%e] [e’e] 29
Ng» 1
E —th:E <qT+1— wf)tr.
r T ;
r=1 r=1 i=1
We obtain the result by comparing coefficients of the powers of ¢. |

2 Hasse-Weil Bound

Our aim is to prove the following bound:
Theorem 2.1: (Hasse-Weil Bound) Let X be a smooth projective curve of genus g over k = F,. Then
|Ngr = ¢" — 1] < 29¢"/%.

We prove the theorem in two parts, first obtaining a naive bound and then improving it to get the result.
The first bound is obtained by constructing a rational function on X that vanishes at the k-rational points
of X and has poles that are not too big. The bound then follows from comparing the number of poles and
zeroes accordingly. From now on, k = IF, and k denotes an algebraic closure. For a function f in the function
field k(X) of a curve X, we use vy(f) to denote the order of vanishing of f at the point y € X.

Lemma 2.2: If ¢" = p?” and ¢" > (g + 1)* then

Ny <q" +1+(29+1)q"/%

Proof. We can assume X has a Fyr-rational point, call it y. Define V;,, to be the k-vector space of functions
f € k(X) which are regular outside of y and have a pole at y of order at most m. In other words, V,,, = £L(D)
for the divisor D = my. We have the following facts:

1. dimVipi1 < dimVj, + 1.
This follows from the fact that dim£(D) < degD + 1 for any divisor D and deg(my) = m.

2. If m > 2g — 2 then dimV,, =m — g+ 1.

This follows from Riemann-Roch and the fact that for any divisor D with degD < 0 we have
dimD = 0.

3. If f(x) € Vp, then f(z9") € Vipyr.
Essentially obvious.

4. There is a basis {f1,..., fs} of V,,, such that vy (f;) < vy(fig1) for 1 <i<s—1.

Wehavek C Vo C Vi C -+ C Vi, so that V,,, = @7, Vi/Vi_1. By fact 1. we have that dimV;/V;_; <
1 and we can thus form the needed basis by picking up for each i (whenever possible), one element of
V; not in V;_;.

Let n,7 be non-negative integers and uq, ..., us be elements of V,,. Consider the function
f@)=ul @)fi(@®)+ -+l (@)fi(a").
This will be the desired rational function mentioned earlier once we prove the following two claims.

A) Ifnp™ < q" then f(x) is identically zero in k(X) if and only if all of the u;i(x) are identically zero.
proof: Suppose f(z) is identically zero but that u;(z) is the first that is not identically zero. We
can rearrange the definition of f(z) to obtain

-

u fi@?) = =l (@) i (@) = = b (@) fo(2?)



and taking the order of y of both sides gives

P vy (uy) + q"vy(f) > mings i (p vy (wi) + q"vy (fi)) > —np”™ + ¢"vy(fit1)-

Therefore

pTvy(uj) = —np” +4q" >0
by assumption. Thus u; vanishes at y, but has no poles anywhere else, hence it must be identically
zero. Contradiction.

B) If mn>2g—2andif (n—g+1)(m—g+1) > np” +m+1 then we can choose the u;(x) not all
identically zero, such that }
W) :=uf (2)f1(z) + - +uf (2)fs(2)
is identically zero.

proof: The function h(z) is regular outside of y and has a pole at y of order I < np™ + m, whence
by property 2. the set of such functions form a k-vector space of dimension at most np™ + m + 1.
Since each u; can vary in a vector space of dimension n — g + 1, the result follows by the numerical
assumptions made.

Now if € X is a Fyr-rational point then 29 = z, and hence under the conditions of claim B), we
can construct the function f(z) such that it is not identically zero, but vanishes at every F,r-rational point
except y. Also by construction, f(z) is a p” power and so it must have at least (N, —1)p” zeroes, including
multiplicity.

On the other hand, f(z) is regular outside of y and the pole at y cannot exceed np™ + mq". Thus under
the numerical assumptions of claim B) we have the inequality

(Ngr = D)p"™ < np” +mq".
Choose p™ = ¢"/?,n = ¢"/?> =1 and m = ¢"/? + 2g. Then the conditions of claim B) are satisfied as long as
q" > (g + 1)*. This was assumed and the result follows. |

We now improve this bound by considering the Frobenius substition.

Lemma 2.3: If ¢" = p*" then
Ngr = ¢+ 0(q"?).

Proof. The function field k(X) has transcendence degree 1 over k and so we have
k C k(u) C k(X)

where the first extension is purely transcendental and the second is finite separable. Thus there exists a field
L that is normal over k(u) and k(X). Let X’ be a curve with k(X’) = L. Then geometrically we have

X' 5 X 5 P!

where X’ L P! and X’ % X are Galois coverings, with Galois groups G and H respectively, H being a
subgroup of G. Here G = {0 : X’ — X' | f = foo} and by Galois covering we mean that G acts transitively
on the fibres of f (or alternatively P! = X’/G). We make likewise definitions for H. We can assume WLOG
that G acts on X’ over F,~ by making a base field extension if necessary.

Let z be a F,--rational point of P!, unramified in X — P!, and let y be a point of X’ lying over z. Let

G, ={oeG|oly) =y}

be the stabilizer of y under the action of G. Then G, acts on the finite field extension k(y)/k(z), of residue
fields, and there is a surjective group homomorphism G, — Gal(k(y)/k(z)). But k(z) = F4» and so this
Galois group has a canonical element, the so called Frobenius element:

o(z) =29



for z € k(y). Let 0 € G, be a preimage of the Frobenius element, so that o(y) = y? . We call this the
Frobenius substitution at y.
Let Ngr (X', o) be the number of points of X’ with Frobenius substitution ¢. Using Lemma 2.2 we obtain
the inequality
Ngr(X',0) <q" + (29" + g + 1

where ¢’ is the genus of X'.
Now we have

> Ny (X',0) = [G] - Nye (PY) + O(1)

ceG
where O(1) accounts for the fibres of the branch points of X" — P!, Since N,-(P') = ¢" + 1, the upper bound
for Ny (X', o) implies that

Ny (X' 0) = q" + O(q""?).

Also

> Nyr(X',0) = [H| - Ny (X) + O(1)

oc€EH
and thus

Ngr(X) = q" +0(q"?).

It now follows by Lemma 2.3 that the series

Z'(X,t) q 1 > .
- - — SNy — g7 = 1)¢"
Z(X,H) 1—qt 1-t ;( v ¢ =1

converges absolutely on the disk |¢| < ¢~ /2. Hence the function has no zeroes on this disk. Moreover, one
can show ([Ste99], Chp.5) the following functional equation

¢ Z(X ) = Z(X,1 - 1)

which shows that Z(X,t) has no zero for |t| > ¢'/2. Hence all zeroes of Z(X,t) lie on the circle |t| = ¢'/2, so
each |w;| = ¢'/? for 1 < i < 2¢g. From Theorem 1.2 we obtain

29
Ny —¢" =11 <> Jwy|” = 294"/,

i=1

This proves the Hasse-Weil Bound.
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