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We prove the Hasse-Weil bound and the analogue of the Riemann Hypothesis for algebraic curves. The
proof presented here is due to Stepanov, with a simplification by Bombieri [Bom72]. This simplified proof
can be found in our main reference [Ste99]. It essentially only relies on the Riemann-Roch theorem and basic
methods.

1 Zeta Function of A Curve

An (algebraic) curve X over a field k is a projective variety of dimension 1 defined over k. We assume the
reader is familiar with these notions, and can consult [Har77] if not.

Let Fq denote the finite field with q elements (with characteristic p), and let Nqr be the number of
Fqr -rational points of X.

Definition 1.1: Let X be a curve over k = Fq, s a complex variable and set t = q−s. The zeta function of
X is

Z(X, t) = exp

( ∞∑
r=1

Nqr

r
tr

)
where Res > 1.

The Weil Conjectures concern realising certain properties of the above function. For instance, one can
show ([Ste99], Chp. 5) the following rationality

Z(X, t) =
P (t)

(1− t)(1− qt)

where P (t) = 1 + qgt2 +
∑2g−1
i=1 σit

i, σi ∈ Q and g is the genus of X. If we let P (t) =
∏2g
i=1(1−ωit) be some

factorization in a finite extension of Q, we have the following

Theorem 1.2: Let X be a smooth projective curve of genus g defined over Fq. Then

Nqr = qr + 1−
2g∑
i=1

ωri .

Proof. We have

Z(X, t) = exp

( ∞∑
r=1

Nqr

r
tr

)
=

∏2g
i=1(1− ωit)

(1− t)(1− qt)

which gives
∞∑
r=1

Nqr

r
tr =

(
2g∑
i=1

log(1− ωit)

)
− log(1− t)− log(1− qt).
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We now use the expansion −log(1− ax) =
∑∞
i=1

aixi

i to see that

∞∑
r=1

Nqr

r
tr =

∞∑
r=1

1

r

(
qr + 1−

2g∑
i=1

ωri

)
tr.

We obtain the result by comparing coefficients of the powers of t. �

2 Hasse-Weil Bound

Our aim is to prove the following bound:

Theorem 2.1: (Hasse-Weil Bound) Let X be a smooth projective curve of genus g over k = Fq. Then

|Nqr − qr − 1| ≤ 2gqr/2.

We prove the theorem in two parts, first obtaining a naive bound and then improving it to get the result.
The first bound is obtained by constructing a rational function on X that vanishes at the k-rational points
of X and has poles that are not too big. The bound then follows from comparing the number of poles and
zeroes accordingly. From now on, k = Fq and k̄ denotes an algebraic closure. For a function f in the function
field k̄(X) of a curve X, we use νy(f) to denote the order of vanishing of f at the point y ∈ X.

Lemma 2.2: If qr = p2r
′

and qr > (g + 1)4 then

Nqr ≤ qr + 1 + (2g + 1)qr/2.

Proof. We can assume X has a Fqr -rational point, call it y. Define Vm to be the k̄-vector space of functions
f ∈ k̄(X) which are regular outside of y and have a pole at y of order at most m. In other words, Vm = L(D)
for the divisor D = my. We have the following facts:

1. dimVm+1 ≤ dimVm + 1.

This follows from the fact that dimL(D) ≤ degD + 1 for any divisor D and deg(my) = m.

2. If m > 2g − 2 then dimVm = m− g + 1.

This follows from Riemann-Roch and the fact that for any divisor D with degD < 0 we have
dimD = 0.

3. If f(x) ∈ Vm then f(xq
r

) ∈ Vmqr .
Essentially obvious.

4. There is a basis {f1, . . . , fs} of Vm such that νy(fi) < νy(fi+1) for 1 ≤ i ≤ s− 1.

We have k̄ ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vm so that Vm = ⊕mi=0Vi/Vi−1. By fact 1. we have that dimVi/Vi−1 ≤
1 and we can thus form the needed basis by picking up for each i (whenever possible), one element of
Vi not in Vi−1.

Let n, τ be non-negative integers and u1, . . . , us be elements of Vn. Consider the function

f(x) = up
τ

1 (x)f1(xq
r

) + · · ·+ up
τ

s (x)fs(x
qr ).

This will be the desired rational function mentioned earlier once we prove the following two claims.

A) If npτ < qr then f(x) is identically zero in k̄(X) if and only if all of the ui(x) are identically zero.

proof: Suppose f(x) is identically zero but that uj(x) is the first that is not identically zero. We
can rearrange the definition of f(x) to obtain

up
τ

j fj(x
qr ) = −up

τ

j+1(x)fj+1(xq
r

)− · · · − up
τ

s (x)fs(x
pr )
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and taking the order of y of both sides gives

pτνy(uj) + qrνy(fj) ≥ mini>j(p
τνy(ui) + qrνy(fi)) ≥ −npτ + qrνy(fj+1).

Therefore
pτνy(uj) ≥ −npτ + qr > 0

by assumption. Thus uj vanishes at y, but has no poles anywhere else, hence it must be identically
zero. Contradiction.

B) If m,n > 2g − 2 and if (n − g + 1)(m − g + 1) > npτ + m + 1 then we can choose the ui(x) not all
identically zero, such that

h(x) := up
τ

1 (x)f1(x) + · · ·+ up
τ

s (x)fs(x)

is identically zero.

proof: The function h(x) is regular outside of y and has a pole at y of order l ≤ npτ +m, whence
by property 2. the set of such functions form a k̄-vector space of dimension at most npτ + m + 1.
Since each uj can vary in a vector space of dimension n − g + 1, the result follows by the numerical
assumptions made.

Now if x ∈ X is a Fqr -rational point then xq
r

= x, and hence under the conditions of claim B), we
can construct the function f(x) such that it is not identically zero, but vanishes at every Fqr -rational point
except y. Also by construction, f(x) is a pτ power and so it must have at least (Nqr − 1)pτ zeroes, including
multiplicity.

On the other hand, f(x) is regular outside of y and the pole at y cannot exceed npτ +mqr. Thus under
the numerical assumptions of claim B) we have the inequality

(Nqr − 1)pτ ≤ npτ +mqr.

Choose pτ = qr/2, n = qr/2 − 1 and m = qr/2 + 2g. Then the conditions of claim B) are satisfied as long as
qr > (g + 1)4. This was assumed and the result follows. �

We now improve this bound by considering the Frobenius substition.

Lemma 2.3: If qr = p2r
′

then
Nqr = qr +O(qr/2).

Proof. The function field k̄(X) has transcendence degree 1 over k̄ and so we have

k̄ ⊂ k̄(u) ⊂ k̄(X)

where the first extension is purely transcendental and the second is finite separable. Thus there exists a field
L that is normal over k̄(u) and k̄(X). Let X ′ be a curve with k̄(X ′) = L. Then geometrically we have

X ′ → X → P1

where X ′
f−→ P1 and X ′

g−→ X are Galois coverings, with Galois groups G and H respectively, H being a
subgroup of G. Here G = {σ : X ′ → X ′ | f = f ◦σ} and by Galois covering we mean that G acts transitively
on the fibres of f (or alternatively P1 ∼= X ′/G). We make likewise definitions for H. We can assume WLOG
that G acts on X ′ over Fqr by making a base field extension if necessary.

Let x be a Fqr -rational point of P1, unramified in X → P1, and let y be a point of X ′ lying over x. Let

Gy = {σ ∈ G | σ(y) = y}

be the stabilizer of y under the action of G. Then Gy acts on the finite field extension k(y)/k(x), of residue
fields, and there is a surjective group homomorphism Gy → Gal(k(y)/k(x)). But k(x) = Fqr and so this
Galois group has a canonical element, the so called Frobenius element:

σ(z) = zq
r
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for z ∈ k(y). Let σ ∈ Gy be a preimage of the Frobenius element, so that σ(y) = yq
r

. We call this the
Frobenius substitution at y.

Let Nqr (X
′, σ) be the number of points of X ′ with Frobenius substitution σ. Using Lemma 2.2 we obtain

the inequality
Nqr (X

′, σ) ≤ qr + (2g′ + 1)qr/2 + 1

where g′ is the genus of X ′.
Now we have ∑

σ∈G
Nqr (X

′, σ) = |G| ·Nqr (P1) +O(1)

where O(1) accounts for the fibres of the branch points of X ′ → P1. Since Nqr (P1) = qr+1, the upper bound
for Nqr (X

′, σ) implies that

Nqr (X
′, σ) = qr +O(qr/2).

Also ∑
σ∈H

Nqr (X
′, σ) = |H| ·Nqr (X) +O(1)

and thus
Nqr (X) = qr +O(qr/2).

�
It now follows by Lemma 2.3 that the series

Z ′(X, t)

Z(X, t)
− q

1− qt
− 1

1− t
=

∞∑
r=1

(Nqr − qr − 1)tr−1

converges absolutely on the disk |t| < q−1/2. Hence the function has no zeroes on this disk. Moreover, one
can show ([Ste99], Chp.5) the following functional equation

q1−g · t2−2g · Z(X, t) = Z(X, 1− t)

which shows that Z(X, t) has no zero for |t| > q1/2. Hence all zeroes of Z(X, t) lie on the circle |t| = q1/2, so
each |ωi| = q1/2 for 1 ≤ i ≤ 2g. From Theorem 1.2 we obtain

|Nqr − qr − 1| ≤
2g∑
i=1

|wi|r = 2gqr/2.

This proves the Hasse-Weil Bound.
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